Species differences in response to peroxisome proliferators correlate in vitro with induction of DNA synthesis rather than suppression of apoptosis.
نویسندگان
چکیده
Tumorigenesis caused by the peroxisome proliferator (PP) class of non-genotoxic hepatocarcinogens is species restricted; rat and mouse are considered responsive whereas the available evidence suggests that humans, non-human primates, dogs, hamsters and guinea pigs are non-responsive. We have demonstrated previously that the PP, nafenopin can suppress rat hepatocyte apoptosis both in vitro and in vivo. Here we describe the ability of nafenopin to suppress apoptosis in mouse, hamster, guinea pig and rat hepatocytes and induce S-phase in mouse and rat hepatocytes. Hepatocyte monolayers from all species examined degenerated rapidly in culture. However, nafenopin (50 microM) reversibly maintained the viability of both rat and mouse hepatocytes. This maintenance was associated with a decrease (P < or = 0.01) in the number of hepatocytes displaying chromatin condensation patterns characteristic of apoptosis. Treatment of rat and mouse monolayers with 5 ng/ml transforming growth factor-beta 1 (TGF beta 1) induced high levels of apoptosis (P < or = 0.01); co-addition of nafenopin suppressed this induced apoptosis (P < or = 0.01). TGF beta 1 also induced apoptosis in hamster and guinea pig hepatocytes (P < or = 0.01) and unexpectedly nafenopin was able to suppress this induced apoptosis (P < or = 0.01) as well as reversibly maintaining the viability of hamster and guinea pig hepatocyte monolayers. Thus, all the species examined responded to nafenopin by a suppression of both spontaneous and TGF beta 1-induced apoptosis. In contrast, only rat and mouse hepatocytes showed an induction of S-phase in response to nafenopin (P < or = 0.01). Certain key experiments were repeated using the PPs methyl clofenapate (MCP) (100 microM) and Wy-14, 643 (10 microM). Both were able to suppress spontaneous and TGF beta 1-induced apoptosis in rat and guinea pig hepatocytes although the effects of MCP were weak (P < or = 0.05) compared with nafenopin or Wy-14 643 (P < or = 0.01). The rat and mouse liver tumour promoter, phenobarbitone (PB) was assessed also. Rat hepatocytes responded to PB with a suppression of apoptosis and an induction of S-phase (P < or = 0.01). Hamster and guinea pig cells gave no response in the S-phase assay and exhibited no suppression of either spontaneous or TGF beta 1-induced apoptosis. Interestingly, nafenopin suppressed the apoptosis induced by the DNA damaging drugs, etoposide and hydroxyurea (P < or = 0.01) suggesting that PPs can impact on diverse apoptosis signalling pathways. Overall, species differences in response to the non-genotoxic hepatocarcinogens studied, correlate with induction of DNA synthesis rather than with suppression of apoptosis. The data extend our knowledge of the mechanisms of species differences in non-genotoxic hepatocarcinogenesis, posing interesting questions on the relative roles of apoptosis and DNA synthesis in carcinogenesis.
منابع مشابه
Role of hepatic non-parenchymal cells in the response of rat hepatocytes to the peroxisome proliferator nafenopin in vitro.
Induction of liver cancer by peroxisome proliferators such as nafenopin is frequently associated with increased liver growth, increased DNA synthesis and suppression of apoptosis. The cytokine, tumour necrosis factor alpha (TNF alpha), and non-parenchymal liver cells have been implicated in mediating the hepatic response to peroxisome proliferators. Here, we have investigated the dependency of ...
متن کاملThe coordinate regulation of DNA synthesis and suppression of apoptosis is differentially regulated by the liver growth agents, phenobarbital and methylclofenapate.
The coordinate regulation of DNA synthesis and suppression of apoptosis was investigated in a rat hepatocyte cell culture system which supports high level induction of DNA synthesis by the peroxisome proliferator, methylclofenapate (MCP) (Plant, N.J. et al., 1998, Carcinogenesis, 19, 925-931). The peroxisome proliferators are hepatocyte mitogens in chemically defined media: glucocorticoid-induc...
متن کاملThe non-genotoxic hepatocarcinogen nafenopin suppresses rodent hepatocyte apoptosis induced by TGFbeta1, DNA damage and Fas.
The suppression of apoptosis may contribute to the carcinogenicity of the peroxisome proliferators (PPs), a class of non-genotoxic rodent hepatocarcinogens. Our previous work demonstrated that the PP nafenopin suppressed both spontaneous and transforming growth factor beta1 (TGFbeta1)-induced hepatocyte apoptosis both in vivo and in vitro. Here, we extend these observations by demonstrating the...
متن کاملAdvances in understanding the regulation of apoptosis and mitosis by peroxisome-proliferator activated receptors in pre-clinical models: relevance for human health and disease
Peroxisome proliferator activated receptors (PPARs) are a family of related receptors implicated in a diverse array of biological processes. There are 3 main isotypes of PPARs known as PPARalpha, PPARbeta and PPARgamma and each is organized into domains associated with a function such as ligand binding, activation and DNA binding. PPARs are activated by ligands, which can be both endogenous suc...
متن کاملCytokines in non-genotoxic hepatocarcinogenesis.
Many toxicants can cause liver injury. Some, such as diethylnitrosamine, are genotoxic and act principally by damaging DNA (1). A second more diverse group cause liver injury but are non-genotoxic (2). Despite differences in the primary target, genotoxic and non-genotoxic hepatotoxicants frequently cause tumours in the liver of experimental rats and mice (1,2). This review is concerned with eva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Carcinogenesis
دوره 17 8 شماره
صفحات -
تاریخ انتشار 1996